31AH Final Exam Solutions

December 10, 2018

1. Consider the following 3 vectors in \mathbb{R}^{3} :

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Compute the following. (i) The unit vector with the same direction as v_{2}. (ii) The angle between v_{1} and v_{2}. (iii) $v_{1} \times v_{2}$. (iv) The area of the parallelogram spanned by v_{2} and v_{3}. (v) The volume of the parallelepiped spanned by v_{1}, v_{2} and v_{3}.

Solution.

(i) To normalize a vector, divide it by its length. Thus,

$$
\frac{v_{2}}{\left|v_{2}\right|}=\frac{1}{2}\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
\sqrt{2} / 2 \\
1 / 2
\end{array}\right]
$$

is the unit vector with the same direction as v_{2}.
(ii) If u and v are vectors in \mathbb{R}^{2} or \mathbb{R}^{3}, then

$$
u \cdot v=|u||v| \cos \theta
$$

where θ is the angle between u and v. Thus, if θ is the angle between v_{1} and v_{2},

$$
\cos \theta=\frac{v_{1} \cdot v_{2}}{\left|v_{1}\right|\left|v_{2}\right|}=\frac{2}{\sqrt{2} 2}=\frac{\sqrt{2}}{2}
$$

Therefore, the angle between v_{1} and v_{2} is $\pi / 4$.
(iii)

$$
v_{1} \times v_{2}=\operatorname{det}\left[\begin{array}{ccc}
\vec{e}_{1} & 1 & 1 \\
\vec{e}_{2} & 0 & \sqrt{2} \\
\vec{e}_{3} & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& =\operatorname{det}\left[\begin{array}{cc}
0 & \sqrt{2} \\
1 & 1
\end{array}\right] \vec{e}_{1}-\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \vec{e}_{2}+\operatorname{det}\left[\begin{array}{cc}
1 & 1 \\
0 & \sqrt{2}
\end{array}\right] \vec{e}_{3} \\
& =-\sqrt{2} \vec{e}_{1}-0 \vec{e}_{2}+\sqrt{2} \vec{e}_{3} \\
& =\left[\begin{array}{c}
-\sqrt{2} \\
0 \\
\sqrt{2}
\end{array}\right]
\end{aligned}
$$

(iv) The area of the parallelogram spanned by two vectors u and v in \mathbb{R}^{3} is given by $|u \times v|$. Computing as in part (iii) above we find that

$$
v_{2} \times v_{3}=\left[\begin{array}{c}
\sqrt{2}-1 \tag{1}\\
-1 \\
1
\end{array}\right]
$$

Therefore, the desired area is

$$
\left|\left[\begin{array}{c}
\sqrt{2}-1 \\
-1 \\
1
\end{array}\right]\right|=\sqrt{(\sqrt{2}-1)^{2}+(-1)^{2}+1^{2}}=\sqrt{5-2 \sqrt{2}}
$$

(v) The volume of the parallelepiped spanned by 3 vectors v_{1}, v_{2} and v_{3} in \mathbb{R}^{3} is given by $\left|v_{1} \cdot\left(v_{2} \times v_{3}\right)\right|$. Thus, using (1), the desired volume is

$$
\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
\sqrt{2}-1 \\
-1 \\
1
\end{array}\right]=\sqrt{2}
$$

2. Consider the system of linear equations

$$
\begin{aligned}
& a x+y+z=1 \\
& x+a y+z=1 \\
& x+y+a z=1 .
\end{aligned}
$$

For what values of a does this have (i) a unique solution? (ii) no solution? (iii) infinitely many solutions? (Justify your assertions).

Solution. We first perform a few row operations. Swapping the first two equations gives

$$
\begin{aligned}
& x+a y+z=1 \\
& a x+y+z=1 \\
& x+y+a z=1 .
\end{aligned}
$$

Now subtract a times the first row from the second row and subtract the first row from the third row to obtain

$$
x+a y+z=1
$$

$$
\begin{aligned}
\left(1-a^{2}\right) y+(1-a) z & =1-a \\
(1-a) y+(a-1) z & =0 .
\end{aligned}
$$

There are two cases according as $a=1$ or $a \neq 1$.
If $a=1$, then the system reduces to

$$
\begin{aligned}
x+a y+z & =1 \\
0 & =0 \\
0 & =0 .
\end{aligned}
$$

which has infinitely many solutions, one for each choice of the nonpivotal variables y and z.
If $a \neq 1$ then we can divide the 2 nd and 3 rd equations in the system by $1-a$ to obtain

$$
\begin{aligned}
x+a y+z & =1 \\
(1+a) y+z & =1 \\
y-z & =0 .
\end{aligned}
$$

There are various quick ways to finish the solution from here. However, we shall rigorously follow the Gaussian elimination algorithm. Swap the 2nd and 3rd rows to obtain

$$
\begin{aligned}
x+a y+z & =1 \\
y-z & =0 \\
(1+a) y+z & =1 .
\end{aligned}
$$

Subtract $1+a$ times the 2 nd row from the 3rd row to obtain

$$
\begin{aligned}
x+a y+z & =1 \\
y-z & =0 \\
(2+a) z & =1 .
\end{aligned}
$$

Therefore, we see that in the case $a \neq 1$ the system is consistent if and only is $a \neq-2$, and in that event, the solution is unique.

Summarizing the observations in the previous paragraphs, the system has a unique solution when $a \neq 1,-2$, it has no solution when $a=-2$, and it has infinitely many solutions when $a=1$.
3. Find a 2×2 matrix A (with real entries) other than $A=I$ satisfying $A^{5}=I$.

Solution. Counterclockwise rotation of the plane about the origin by θ radians is a linear transformation represented by the matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

Furthermore, if n is a positive integer, rotation by θ radians n times is the same as rotation by $n \theta$ radians so that

$$
A^{n}=\left[\begin{array}{cc}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right] .
$$

Hence, if we let A represent rotation by $2 \pi / 5$ radians, then

$$
A^{5}=\left[\begin{array}{cc}
\cos 5 \frac{2 \pi}{5} & -\sin 5 \frac{2 \pi}{5} \\
\sin 5 \frac{2 \pi}{5} & \cos 5 \frac{2 \pi}{5}
\end{array}\right]=\left[\begin{array}{cc}
\cos 2 \pi & -\sin 2 \pi \\
\sin 2 \pi & \cos 2 \pi
\end{array}\right]=I
$$

Remark.

$$
A=\frac{1}{4}\left[\begin{array}{cc}
\sqrt{6-2 \sqrt{5}} & -\sqrt{10+2 \sqrt{5}} \\
\sqrt{10+2 \sqrt{5}} & \sqrt{6-2 \sqrt{5}}
\end{array}\right] .
$$

4. Determine whether the following matrix is invertible, and if so, compute its inverse.

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right]
$$

Solution. A square matrix A is invertible if and only if it row reduces to I. Furthermore, when A is invertible, $[A I]$ row reduces to $\left[I A^{-1}\right]$. Therefore we row reduce $[A I]$ to echelon form:

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & -1 & 1 & 0 & 0 & 0 \\
1 & 1 & -1 & 1 & 0 & 1 & 0 & 0 \\
1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

subtract row 1 from rows 2 and 3 and add row 1 to row 4

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & -1 & 1 & 0 & 0 \\
0 & -2 & 0 & 2 & -1 & 0 & 1 & 0 \\
0 & 2 & 2 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

multiply rows 2 and 3 by $-\frac{1}{2}$ and then swap them

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 / 2 & 0 & -1 / 2 & 0 \\
0 & 0 & 1 & -1 & 1 / 2 & -1 / 2 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

subtract row 2 from row 1 and subtract 2 times row 2 from row 4

$$
\left[\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 & 0 & -1 & 1 / 2 & 0 & -1 / 2 & 0 \\
0 & 0 & 1 & -1 & 1 / 2 & -1 / 2 & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 & 1 & 1
\end{array}\right]
$$

subtract row 3 from row 1 and subtract 2 times row 3 from row 4

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 0 & -1 & 1 / 2 & 0 & -1 / 2 & 0 \\
0 & 0 & 1 & -1 & 1 / 2 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 4 & -1 & 1 & 1 & 1
\end{array}\right]
$$

multiply row 4 by $1 / 4$

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 0 & -1 & 1 / 2 & 0 & -1 / 2 & 0 \\
0 & 0 & 1 & -1 & 1 / 2 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right]
$$

subtract row 4 from row 1 and add it to rows 2 and 3

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 & -1 / 4 \\
0 & 1 & 0 & 0 & 1 / 4 & 1 / 4 & -1 / 4 & 1 / 4 \\
0 & 0 & 1 & 0 & 1 / 4 & -1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 0 & 1 & -1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right] .
$$

It follows that A is invertible and

$$
A^{-1}=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & -1 / 4 \\
1 / 4 & 1 / 4 & -1 / 4 & 1 / 4 \\
1 / 4 & -1 / 4 & 1 / 4 & 1 / 4 \\
-1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right]
$$

Remark. A one minute solution to this problem is as follows. Observe that

$$
A^{2}=\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]=4 I,
$$

or equivalently,

$$
A\left(\frac{1}{4} A\right)=I .
$$

Therefore, A is invertible and $A^{-1}=\frac{1}{4} A$.
5. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ where

$$
v_{1}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
1 \\
5 \\
-1 \\
5
\end{array}\right], v_{4}=\left[\begin{array}{c}
1 \\
1 \\
4 \\
-1
\end{array}\right], v_{5}=\left[\begin{array}{l}
2 \\
7 \\
0 \\
2
\end{array}\right] .
$$

Find a basis for Span S.
Solution. If we let A denote the 4×5 matrix whose j th column is v_{j}, then $\operatorname{Span} S=\operatorname{img} A$. Consequently, we may exploit Theorem 2.5.4 in the text (page 193), which asserts that a basis for $\operatorname{img} A$ is given by the pivotal columns of A. These can be identified by row reduction.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 2 \\
2 & 3 & 5 & 1 & 7 \\
2 & 1 & -1 & 4 & 0 \\
-1 & 1 & 5 & -1 & 2
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 2 \\
0 & 1 & 3 & -1 & 3 \\
0 & -1 & -3 & 2 & -4 \\
0 & 2 & 6 & 0 & 4
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 2 \\
0 & 1 & 3 & -1 & 3 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 2 & -2
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 2 \\
0 & 1 & 3 & -1 & 3 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

Evidently, the first, second, and fourth columns of A are pivotal. Therefore, $\left\{v_{1}, v_{2}, v_{4}\right\}$ is a basis for Span S.
6. (i) Find a basis for the kernel of

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
2 & -1 & 2 & -1 \\
1 & -3 & 2 & -2
\end{array}\right]
$$

(ii) Based on your calculation in part (i), what can you conclude about the dimension of img A ?

Solution. To solve part (i) we follow the recipe provided in Theorem 2.5.6 in the text (page 194).

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
2 & -1 & 2 & -1 \\
1 & -3 & 2 & -2
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & -5 & 2 & -3 \\
0 & -5 & 2 & -3
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 1 & -2 / 5 & 3 / 5 \\
0 & 0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

Thus, the elements in ker A are given by choosing the non-pivotal variables x_{3} and x_{4} arbitrarily, and then solving the equations

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{4} & =0 \\
x_{2}-2 / 5 x_{3}+3 / 5 x_{4} & =0
\end{aligned}
$$

for x_{1} and x_{2}. Furthermore, a basis for ker A arises from the two choices $x_{3}=1, x_{4}=0$ and $x_{3}=0, x_{4}=1$. When $x_{3}=1$ and $x_{4}=0$, we see that $x_{2}=2 / 5$ and $x_{1}=-4 / 5$ and when $x_{3}=0, x_{4}=1$, we see that $x_{2}=-3 / 5$ and $x_{1}=1 / 5$. Thus,

$$
\left\{\left[\begin{array}{c}
-4 / 5 \\
2 / 5 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 / 5 \\
-3 / 5 \\
0 \\
1
\end{array}\right]\right\}
$$

is a basis for $\operatorname{ker} A$.
To solve part (ii) recall that the dimension formula (Theorem 2.5.8, page 196) asserts that if A is a general $m \times n$ matrix, then

$$
\operatorname{dim} \operatorname{ker} A+\operatorname{dimimg} A=n .
$$

In our case, $n=4$ and we just showed in part (i) that ker A has a basis consisting of 2 elements, i.e., that $\operatorname{dim} \operatorname{ker} A=2$. Therefore,

$$
\operatorname{dim} \operatorname{img} A=n-\operatorname{dim} \operatorname{ker} A=4-2=2 .
$$

7. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let $A=[T]$. Prove that T is one to one if and only if the columns of A are linearly independent.

Solution. We shall use two simple formulas. The first follows immediately the definition of $[T]$.

$$
\begin{equation*}
T(\vec{x})=A \vec{x} \quad \text { for all } \vec{x} \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

The second formula, used repeatedly throughout the quarter, follows from the definition of matrix multiplication. If for $j=1,2, \ldots, n$, we let \vec{c}_{j} denote the j th column of A, then

$$
\begin{equation*}
A \vec{x}=\sum_{j=1}^{n} x_{j} \vec{c}_{j} \quad \text { for all } \vec{x} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

First assume that T is one to one. We wish to prove that the columns of A are linearly independent. Accordingly, assume that $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ and

$$
\begin{equation*}
\sum_{j=1}^{n} x_{j} \vec{c}_{j}=\overrightarrow{0} \tag{4}
\end{equation*}
$$

By (3), this implies that $A \vec{x}=\overrightarrow{0}$, which in turn implies via (2) that $T(\vec{x})=\overrightarrow{0}$. Since $T(\overrightarrow{0})=\overrightarrow{0}$ as well, and T is assumed to be one to one, it follows that $\vec{x}=\overrightarrow{0}$, i.e.,

$$
\begin{equation*}
x_{j}=0 \text { for each } j . \tag{5}
\end{equation*}
$$

Summarizing, we have shown that if (4) holds then (5) holds, i.e., the columns of A are linearly independent.

Now assume that the columns of A are linearly independent. We wish to show that T is one to one. Accordingly, assume that \vec{x} and \vec{y} are vectors in \mathbb{R}^{n} and

$$
\begin{equation*}
T(\vec{x})=T(\vec{y}) . \tag{6}
\end{equation*}
$$

As T is linear, it follows that

$$
T(\vec{x}-\vec{y})=T(\vec{x})-T(\vec{y})=0 .
$$

But then (2) implies that $A(\vec{x}-\vec{y})=0$, which in turn implies via (3) that

$$
\sum_{j=1}^{n}\left(x_{j}-y_{j}\right) \vec{c}_{j}=0
$$

As we assumed that the columns of A are linearly independent, we conclude that $x_{j}-y_{j}=0$ for each j. Therefore,

$$
\begin{equation*}
\vec{x}=\vec{y} . \tag{7}
\end{equation*}
$$

Summarizing we have shown that if (6) holds, then (7) holds. Therefore, T is one to one.
8. Show that if A and B are $n \times n$ matrices, then

$$
\text { if } A \text { and } B \text { are invertible, then } A B \text { is invertible. }
$$

Is the converse of this statement true? If so, prove it. If not, give a counterexample.
Solution. If A and B are invertible, then

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I
$$

Thus, $B^{-1} A^{-1}$ is a right inverse for $A B$. Likewise, as

$$
\left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{-1} B=I
$$

$B^{-1} A^{-1}$ is a left inverse for $A B$. As $A B$ has both a right and left inverse, $A B$ is invertible.
The converse statement is true. To prove it recall that a square matrix is invertible if and only if it is onto (cf. the discussion surrounding equation 2.2 .11 on page 171 of the text). Assume $A B$ is invertible. Then $A B$ is onto. As $A B$ is onto, A is onto. Hence, since A is onto, A is invertible. To see that B is invertible, note that as A and $A B$ are invertible,

$$
B=A^{-1}(A B)
$$

is a product of invertible matrices, and hence is invertible as well.
9. Diagonalize

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 0 & -2 \\
1 & -1 & -1
\end{array}\right]
$$

Solution. We first calculate the characteristic polynomial p_{A}.

$$
\begin{aligned}
p_{A}(x) & =\operatorname{det}(x I-A) \\
& =\operatorname{det}\left[\begin{array}{ccc}
x-1 & -1 & 1 \\
-2 & x & 2 \\
-1 & 1 & x+1
\end{array}\right] \\
& =(x-1) x(x+1)-2+2+x-2(x+1)-2(x-1) \\
& =(x-1) x(x+1)-3 x \\
& =x^{3}-4 x
\end{aligned}
$$

$$
=(x+2) x(x-2)
$$

Therefore, the eigenvalues of A are $-2,0$, and 2 .
For each eigenvalue λ we calculate an eigenvector corresponding to λ by using row reduction to find a nonzero vector in the kernal of

$$
\lambda I-A=\left[\begin{array}{ccc}
\lambda-1 & -1 & 1 \\
-2 & \lambda & 2 \\
-1 & 1 & \lambda+1
\end{array}\right]
$$

Before picking particular values for λ we can save some time if we do a few row reductions first. Multiply row 3 by -1 and swap it with row 1 to obtain

$$
\left[\begin{array}{ccc}
1 & -1 & -(\lambda+1) \\
-2 & \lambda & 2 \\
\lambda-1 & -1 & 1
\end{array}\right]
$$

Now add 2 times row 1 to row 2 and subtract $\lambda-1$ times row 1 from row 3:

$$
\left[\begin{array}{ccc}
1 & -1 & -(\lambda+1) \\
0 & \lambda-2 & -2 \lambda \\
0 & \lambda-2 & \lambda^{2}
\end{array}\right]
$$

Finally, subtract row 2 from row 3 to obtain

$$
\left[\begin{array}{ccc}
1 & -1 & -(\lambda+1) \tag{8}\\
0 & \lambda-2 & -2 \lambda \\
0 & 0 & \lambda(\lambda+2)
\end{array}\right]
$$

Letting $\lambda=-2$ in (8) we find that v is a corresponding eigenvector provided

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -4 & 4 \\
0 & 0 & 0
\end{array}\right] v=0
$$

which implies that

$$
\left[\begin{array}{l}
0 \tag{9}\\
1 \\
1
\end{array}\right] \text { is an eigenvector for } A \text { corresponding to }-2 \text {. }
$$

Letting $\lambda=0$ in (8) we find that v is a corresponding eigenvector provided

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] v=0
$$

which implies that

$$
\left[\begin{array}{l}
1 \tag{10}\\
0 \\
1
\end{array}\right] \text { is an eigenvector for } A \text { corresponding to } 0
$$

Finally, letting $\lambda=2$ in (8) we find that v is a corresponding eigenvector provided

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 0 & -4 \\
0 & 0 & 8
\end{array}\right] v=0
$$

which implies that

$$
\left[\begin{array}{l}
1 \tag{11}\\
1 \\
0
\end{array}\right] \text { is an eigenvector for } A \text { corresponding to } 2 .
$$

Combining (9), (10) and (11) yields that $P^{-1} A P=D$ where

$$
P=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \text { and } D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

10. Let P_{3} denote the vector space of polynomials of degree ≤ 3, define $D: P_{3} \rightarrow P_{3}$ by $D(p(x))=p^{\prime}(x)$, and define $T: P_{3} \rightarrow P_{3}$ by $T(p(x))=x p^{\prime}(x)$. Show that T has an eigenbasis but D does not.

Solution. First observe that for $k=0,1,2,3$

$$
T\left(x^{k}\right)=x\left(k x^{k-1}\right)=k x^{k},
$$

i.e., x^{k} is an eigenvector for T with corresponding eigenvalue k. Therefore, since $\left\{1, x, x^{2}, x^{3}\right\}$ is a basis for $P_{3},\left\{1, x, x^{2}, x^{3}\right\}$ is an eigenbasis for T.

That D does not have an eigenbasis follows from the fact that D has only one eigenvalue (namely, 0) of multiplicity 1 (i.e., the dimension of the corresponding eigenspace is 1). To prove this fact assume that λ is an eigenvalue for D with corresponding eigenvector $p(x)$. Since the fourth derivative of a cubic polynomial is 0 ,

$$
\lambda^{4} v=D^{4} v=0
$$

Hence, since $v \neq 0, \lambda=0$. This proves that 0 is the only possible eigenvalue for D. To see that the dimension of the corresponding eigenspace is 1 simply note that if $p(x)$ is an eigenvector corresponding to 0 , then

$$
p^{\prime}(x)=D p(x)=0 p(x)=0
$$

so that p is constant by a well known theorem from calculus. This shows that the eigenspace corresponding to 0 is spanned by the constant polynomial 1 . Therefore, its dimension is 1 as claimed.

